301 research outputs found

    Crystal-clear neuronal computing

    Get PDF
    Induced progressive crystallization in chalcogenide-based materials can be used to closely mimic neuronal functions, opening new paths to neuromorphic computing

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices

    A ferroelectric memristor

    Full text link
    Memristors are continuously tunable resistors that emulate synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, but the mechanism remains controversial. Purely electronic memristors have recently emerged based on well-established physical phenomena with albeit modest resistance changes. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures

    Recent advances on information transmission and storage assisted by noise

    Full text link
    The interplay between nonlinear dynamic systems and noise has proved to be of great relevance in several application areas. In this presentation, we focus on the areas of information transmission and storage. We review some recent results on information transmission through nonlinear channels assisted by noise. We also present recent proposals of memory devices in which noise plays an essential role. Finally, we discuss new results on the influence of noise in memristors.Comment: To be published in "Theory and Applications of Nonlinear Dynamics: Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer, 2014

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems

    Get PDF
    The human brain intrinsically operates with a large number of synapses, more than 10(15). Therefore, one of the most critical requirements for constructing artificial neural networks (ANNs) is to achieve extremely dense synaptic array devices, for which the crossbar architecture containing an artificial synaptic node at each cross is indispensable. However, crossbar arrays suffer from the undesired leakage of signals through neighboring cells, which is a major challenge for implementing ANNs. In this work, we show that this challenge can be overcome by using Pt/TaOy/nanoporous (NP) TaOx/Ta memristor synapses because of their self-rectifying behavior, which is capable of suppressing unwanted leakage pathways. Moreover, our synaptic device exhibits high non-linearity (up to 10(4)), low synapse coupling (S.C, up to 4.00 x 10(-5)), acceptable endurance (5000 cycles at 85 degrees C), sweeping (1000 sweeps), retention stability and acceptable cell uniformity. We also demonstrated essential synaptic functions, such as long-term potentiation (LTP), long-term depression (LTD), and spiking-timing-dependent plasticity (STDP), and simulated the recognition accuracy depending on the S.C for MNIST handwritten digit images. Based on the average S.C (1.60 x 10(-4)) in the fabricated crossbar array, we confirmed that our memristive synapse was able to achieve an 89.08% recognition accuracy after only 15 training epochs
    corecore